
International Journal of Theoretical Physics, Vol. 8, No. 5 (1973), pp. 341-352 

On the Quantum Mechanical Treatment of Decaying 
Non-Relativistic Systems 

L. LANZ,'~ L. A. LUGIATO~ and G. R A M E L L A  

Istituto di Fisiea dell' Universith, via Celoria 16, 20133 Milano Italy 

Received: 4 December 1972 

Abstract 

The usual treatment of decaying non-relativistic particles by means of a non-unitary 
irreducible representation of the Galilei group is deduced from a suitable formulation 
of symmetry principles. In such a formulation time translation is distinguished from 
time evolution; this point is crucial to obtain the irreversible behaviour of unstable 
particles. 

1. Introduction 

In this paper we begin a systematic attempt to put the treatment of 
irreversible processes in quantum mechanics on a sound conceptual basis. 
Since the basic description of a physical system is universally accepted to 
be a reversible one--e.g,  a N-body dynamics for a macroscopic system, a 
field theory for an unstable part icle--the problem exists of extracting the 
description of  irreversible processes from this basic reversible theory. In 
the usual approach to such a problem one introduces more or less justified 
approximations-- t runcat ion of hierarchies, neglect of  non-markoffian 
terms e tc . - -by which one gets the expected result: e.g. the Boltzmann 
equation for a dilute gas, the exponential decay law for an unstable particle. 
However, an unambiguous and fully motivated prescription to obtain 
irreversible descriptions is so far lacking. Recent developments in the 
theory of macroscopic systems indicate a way to overcome, in principle, 
the forementioned difficulties. Prigogine and co-workers (1969) and 
Balescu & Wallemborn (1971) have proposed and developed a formalism 
by which independent subdynamics can be extracted from a N-body 
theory. By a similar formalism, rigorous embedding of an irreversible 
time evolution into a reversible one has been obtained by the present 
authors (Lanz et aL, 1971); in such a way a concrete formalisation has been 
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given of the general concept of embedding an irreversible theory into a 
reversible one, recently proposed by Ludwig (1970, 1972). Therefore by 
these results one can hope that the theory of an unstable particle can be 
linked in a clearcut way to a reversible field theory (Lanz et al., 1973) and, 
likewise, the theory of a macroscopic system can be rigorously linked to 
the underlying N-body structure. 

In the present paper we are not yet concerned with the embedding 
problem, but treat the preliminary problem to formulate an irreversible 
quantum mechanical description for an unstable micro-object. Such a 
point is not at all trivial from the conceptual point of view, since the usual 
axiomatics of quantum systems leads to identify the time evolution operator 
with the unitary time translation operator; in such a way one rules out the 
possibility of describing a decaying object. In the non-relativistic case one 
can very easily guess how to introduce a lifetime into the time evolution, 
i.e. by simply adding a negative imaginary constant to the eigenvalues of 
the energy: in the relativistic case, however, this problem appears harder 
(Schulman, 1970) and somewhat paradoxical aspects of the known tentative 
solutions make a cleaner approach desirable. 

In this paper we show that non-unitary time evolution can be naturally 
reconciled with symmetry under the transformations of the Galilei group if 
the theory is formulated in a cartesian product space Yf • ~ such that, 
loosely speaking, the time specification of the measurement is given by a 
point of Yt and the remaining specifications correspond to a unit ray in the 
Hilbert space ~ .  This point is discussed in Section 2. By treating the 
symmetries under Galilean transformations on this basis, we prove in 
Sections 3 and 4 that a non-relativistic unstable micro-object is associated 
to a non-unitary projective (i.e. up to a factor) representation of the Galilei 
semigroup which, in the usual notations (Inonti & Wigner, 1952), is the set 
of transformations (b, a, v, R) with b < 0. Finally in Section 5 we characterise 
an unstable particle by a non-unitary projective representation of the 
Galilei semigroup such that the operators representing the subgroup of 
spatial rotations and translations, together with the operator representing 
the position, are an irreducible set of operators. It turns out that the time 
evolution is described by a Schr6dinger equation with a lifetime, it  appears 
that the treatment can be extended in an almost straightforward way to 
the relativistic case, to yield the result that an unstable relativistic micro- 
object is associated to a non-unitary representation of the Poincar6 semi- 
group (Schulman, 1970). However, the development of this point is left 
to a future paper. 

2. Quantum Mechanical Description of  an Unstable System 

In the usual axiomatics of quantum mechanics (Von Neumann, 1955) 
one assumes that to a micro-object M a separable Hilbert-space ~ corre- 
sponds. A property of M is any set of specifications about M referring 
either to the way in which Mis prepared or to the outcome of an observation 
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on M, including the specification of 'where' and 'when' the preparation or 
observation happens. To a property 7 a subspace ~9~ of W corresponds; 
7 is said to be sharper than 7' if Yv ~ ~ , ;  therefore y will be called a 
maximal sharp property if Y~ is a one-dimensional space. All the properties 
that we shall consider in the following are intended to be maximal sharp, 
unless otherwise explicitly stated. Letf~ be the unit ray corresponding to 7. 
Considering for simplicity the case of no super-selection rule, one assumes 
that conversely for any unit ray f at least one 7 exists for which f=f~.  
If  M has by preparation the property 7o, the probability P~l,~o that a 
property 71 is ascertained is given by 

P~v,o = [f,t" f,o ]2 (2.1) 
where 

f . g =  [(f,g)l, f ~ f ,  g ~ g  
g-1 0 t Let us consider a frame transformation O --~ with g ~ f~, fq being the 

~f oper orthochronous Galilei group, g induces a ray transformation 
-+fg, = O(g)f~, where g~, is the property which appears to O in the 

same way as 7 appears to O ; O(g) is a ray representation of fq such that 

O(g)f. O(g)~ = f .  g (2.2) 

for every g ~ fg, f ,  ~: see e.g. Wightman (1959). By a theorem of Wigner 
(1931) a ray correspondencef& O(g)fsuch that (2.2) holds is induced by 
a one-to-one linear vector correspondence f - ~  U(g)f, U(g) being a 
unitary projective representation of fq. To get an insight into the theory 
one distinguishes the time specification included in 7, writing 

- (y,  t )  ( 2 . 3 )  

and makes the obvious assumption that for any (~, t) a (~',0) exists such 
that P(~, o, (f,  o) r 0. This implies immediately that the vectors f(~, o) span 
Jd. Let us consider a time translation of ~: and the corresponding unitary 
operator U((z, 0, 0, /)) = U(v). Taking into account the meaning of the 
labels in (2.3) one has 

f(~, o = U(t) f(~, o) (2.4) 
and by (2.1) 

P , , , , , ) ,  <go,o> = o), u ( - ( h  - to))f( o, o))l (2 .5 )  
By equation (2.5) the unitary operator 

Z(~) = V ( - J  (2.o 3 

can be interpreted as a time evolution operator. For any set {Y~}~=I, 2 . . . .  
such that {f(h, o)}~=1, 2 ..... is an orthonormal basis in ~ one has that 

P(t) = ~ P(h,t),(~o, to)= 1 (2.7) 

Equation (2.7) indicates that only a stable system can be described within 
this formulation. Finally, to characterise a one-particle system one can 
assume with Mackey (1968) that did is the space of an irreducible represen- 
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tation for the position operator and the subgroup of f# of rotations and 
translations. 

It seems to us that the crucial point which rules out unstable systems is 
assumption (2.3). Assumption (2.3) is, however, not justified in the usual 
formulation of quantum mechanics. Ludwig and collaborators have 
recently derived such a formulation, in the more general case of mixtures 
instead of pure states, within a realistic theory of measurement starting 
from reasonable axioms about the macroscopic systems which enter into 
experiments concerning micro-objects (Ludwig, 1967, 1970). In their 
theory the preparation of the micro-object by a macroscopic system and 
the effects produced by the micro-object on a macroscopic system do not 
contain one sharp time specification. For  example, the effects can consist 
of a set of macroscopic modifications at different time points; moreover 
two effects at different time points, which exhibit the same statistics for 
every preparation, correspond to the same operator (Ludwig, 1972). 

On the other hand in order to have a clearly interpretable description of 
a one-particle system it seems to us convenient to use a formulation in 
which a sharp time specification can be attached to the prepared or observed 
properties in a consistent way. We do this representing mathematically 
the preparation and the observation of a micro-object M by a couple 
(fr, t), where t refers to the time at which the preparation or the observation 
is performed and ~ to the remaining specifications of the properties; f~ is 
a unit ray in a separable Hilbert space, each unit ray of  which is in turn 
associated to at least one property. It is outside the scope of this paper to 
give a justification of this more schematic description, starting from general 
axioms about the set of experiments such that a suitable time specification 
can be attributed to the preparations and to the observations of a micro- 
object. Such a set of experiments is a restriction of the full set of experiments 
considered by Ludwig. Our only claim is that an unstable particle can be 
consistently described within our scheme. 

Let us consider a collection of Nvo, to objects identical to M having by 
preparation at time to the property ~o- We assume that the number 
Nr 1, t~; ~.o, to of objects, for which the property ~1 is ascertained at a time 
tl >/to, is given by 

Nrl, q; ~o, to = [fh" V(tl, t o ) S j  z . N~ o, to (2.8) 

where 12(ta, to) is a contractive transformation of the rayst in Y#, depending 
on two parameters to, h, with -oo < to < +m, tl > to; we assume that 
the domain of f~(tl, to) is the set of all rays in ~tf and that 

17"(to, to) = L - ~  < to < +0% P(tt, to) # 0 (2.9) 

# A ray f in  ~ is the set of all vectors of the form cof, where f is  a fixed vector of 
and co any complex number  with Icol = l. We define c~f= c~ffor any complex ~. We call 
(somewhat  improperly) no rm o f  f the number  I/fl[ and indicate it by t] f 11. A ray trans- 
format ion A is called contractive if Ildfll < Nf][, n o r m  conserving if lldf[l = l[fII. The 
strong continuity of  a ray t ransformation is defined with respect to the distance 
d(f,#)= Min llf-gll. 

Y~f, oe0 
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where [ is the identity operator of the rays in ocg, and 0 the null operator. 
If  12(h, to) is norm conserving, M is stable; if /2(h,  to) is strictly contractive, 
M is unstable. We stress that I;'(h, to) has no connection with time trans- 
lations. N~ t~. 7o 7o is intended to be a theoretical prevision, which is 
expected to' fit t'lae experimental values .~wxP. ~,t~; ~o, to when N~o. 70 is large 
enough. 

Equation (2.8) is the basic axiom in our formulation, as well as (2.1) 
was in the previous one. Contrary to (2.0, it is not an axiom on 
probabilities, since using the sharp time specification it is natural to refer 
probabilities to the collection of systems present at time t. From (2.8) the 
number of systems of the collection at time tl is given by 

NTo, to(tO = ~ [fT~. #(q,  t o ) f j 2 N ,  o, to 
l=1 

= 1[/2(q, tO)~o[[2. N~o ' to (2.10) 

where {V~}i=l,z .... is any set of properties such that, choosing arbitrarily 
f~ e f t ,  the set of elements {f~}~-i z is an orthonormal basis in ~ .  
VChen tM is stable, Nro ' to(t0 is indet~eMent of t~ so that (2.8) becomes an 
axiom about the probabilities Nr ,  q; to, ~o/N~o 7,o. 

In the general case one can define a probability 

with 

N 7 1 ,  t l ;  7 0, to 
PTo, to(7~, q) N~o, to(q) - [f~I" f~o, 7o(t0] z (2.1 1) 

 (tl, to) Zo 
fro,,o(tl) ll v(tl ,  to)~ofl (2.12) 

where PTo, To(Y1, tO gives the probability of finding the property 71 at time 
tl in the collection ofNTo ' to(t0 systems. The unit rayf~o ' to(t0 is a generalisa- 
tion of the usual 'state vector', to which (2.12) reduces when M is stable. 

In conclusion, our formulation (2.8) is certainly more schematic than 
(2.1), but allows a clean physical interpretation and an easy introduction 
of definite physical assumptions as the existence of a position operator for 
a Galilean particle, etc. In Lanz et al. (1973) we shall discuss the embedding 
of a micro-object, described in the present paper, into a field theoretical 
model. In that context formulation (2.1) provides itself naturally for the 
model, since, the properties of the model do not need a concrete physical 
interpretation. 

3. Galilean Invariance 

Due to the symmetry of  the theory under the transformations g ~ if, by 
an obvious generalisation of the usual procedure (Wightman, 1959) one 
has a representation qZ(g) of ff on the space of the couples (J~ t), f unit 
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ray of W, t E R. Taking into account the meaning of the index t in (f,  t) 
one has immediately for every g = (b, a, v, R) 

q/((b, a, v, R)) (f, t) = (U(a, v, R; t ) f ,  t + b) (3.1) 

where/_7(a, v, R; t) is an operator on the maitary rays; the standard notation 
for g is used: b time translation, a space translation, v acceleration, R 
rotation. We assume that U(a,v,R;t)  depends continuously on a, v, R. 
From 

~(g2) .~(gl)  = ~(g2. gl) 

taking into account that 

(b2, a2, v2, R2) (bl, al, vl, R1) 
= (b2 + b~, R2 al + v2 bl + a2, R2 v~ + v2, R2 R1) 

one has by (3.1) 

U(a2 ,  v2, R 2 ; t + bx) /S r (a l  v l ,  R1 ;  t )  

= 0 ( R  2 a 1 + v 2 b 1 + a2, R 2 v 1 + v2, R 2 g 1 ; t) (3.2) 
Such a relation leads in particular to 

8(a, v, R; t) = 0(a  + vt, v, R; 0) (3.3) 

and to 

O(a~, v~; g2; t) 8(a~, v~, R~; t) 
= U ( R  2 a 1 + a2, R 2 v 1 + v2, R 2 R 1 ; t )  (3.4) 

Equation (3.4) means that ~(a,v,R; t) is a ray representation of the sub- 
group fro corresponding to b = 0, for any fixed t; equation (3.3) links 
representations with different t. The condition of Galilean invariance of 
the description given by the numbers N~I ' tl;ro, to is finally expressed by the 
relation 

f.(/(tj, to)~,= O(a,v,R;tl)f. 12(tl+b, to+b)O(a,v,R;to)~ (3.5) 

Taking tl = to = t, by (2.9) equation (3.5) becomes 

f .  $ = 0(a, v, R; t)f .  0(a, v, R; t)~ (3.6) 

Then by the theorem of Wigner (1931) the ray correspondence U(a, v, R;t) 
is induced by a unitary projective representation U(a, v, R; t) of (a o : 

U(a~, v~, R~; t) U(a,  v~, R~; t) 

= o)(a2, v2, R2, al, vx, Rx; t) U(R2 al + a2, R2 vl + v2, R2 R~; t) (3.7) 

where co(a2, v2, R2, al, vl, R1; t) is a suitable phase factor. By equation (3.3) 
one can take 

U(a, v, R; t) = U(a + vt, v, R; 0) (3.8) 
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By equat ion (3.5), in the case a = v = 0, R = L one has 

~(t~, tO = ~(t~ + b, t~ + b) = ~(t~ - q) 

These are the consequences o f  symmetry  considerations. 
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(3.9) 

4. The Objectivity Requirement 

We assume that  the contractive ray t ransformat ion ~2(t), t ~> 0, is 
induced by a linear operator  V(t) on ~f ,  depending on t in a strongly 
cont inuous way for  t < 5, e arbitrarily small . t  V(t) is then a linear contrac- 
tive operator  on J f  for  any t ~> 0. Wi thout  any loss o f  generality we can 
take, by  (2.9), V(0) = L 

Equat ion  (3.5), by (3.8) and (3.9), can be rewritten in the following way:  

V(t) = co(a, v, R; t) U- l (a  + vt, v, R; 0) 
.V(t)U(a,v,R;O), t>~o (4.1) 

where ~o(a, v, R;  t) is a suitable phase factor. 
Now,  since the system M is described by means o f f ,  o, to(t) and N~o ' to(t), 

we require that  an 'objective'  character be given to such a description. 
More  specifically, we make the following fundamental  objectivity require- 
ment: at any time tl the observer must  be able to ascertain at least one 
proper ty  on a collection o f  objects M (prepared at an earlier time to) 
without  perturbing the time evolution o f  the collection for  t > 6.  In  fact, 
under  this condit ion we can say that  M 'has '  such a proper ty  at time tl. 
I t  is immediately seen that  this requirement is satisfied if V(t) is an up-to-a- 
factor  one-parameter  semigroup:  

V(tl) V(tz) = co(q, tz) V(fi + tz), q, t2 >> 0 (4.2) 

where co(q, t2) is a suitable phase factor. In  fact, one has in such a case 
f rom (2.8) and (2.12) that  

I(L2, v ( t -  to) f~o)[Z Nro, to(tO) = ](f~2, V ( t -  tO L1)12 Nr~,q(tO (4.3) 

with 
f~l = L o ,  to(tO, ?v~l, ~l(q) = Nro, ,o(q), t >.> tl >~ to 

t One would prefer to assume strong continuity of/2(t) with respect to the distance 
d()~g) = Min ] I f -  glr for t < e, e arbitrarily small. Then assuming that/2(t) is induced 

by a linear operator V'(t), one should look for a modulus one function co(t) such that 
V(t) = co(t) V'(t) is strongly continuous for t < e'. In the case of a norm conserving 
transformation V(t), by a theorem of Bargmann (1954) such co(t) always exists; in the 
case of a strictly contractive l)(t), the same result can be obtained with the further 
assumption that 

arg{(V'(t) f, V'(t)g)} 
is a continuous functional of t for t < e, V f,g ~ ~gf, and that the continuity in t of 

[(V'(t) f, V'(t)g)] 
is uniform with respect tofand g, with [ I f [ l  = Ilgll = 1. 
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In words, if 71 is a property such that f~o. ~o(tl) =f~l, the ascertainment of 
Yl at time q does not perturbate the collection. Conversely, from the 
condition that for any couple of unit vectors f and g and any t ~> tl ~> to a 
unit vector g' and a number N '  exist, such that 

[(f, V( t  - to) g)[ z N = l ( f ,  V ( t  - q )  g')l  2 N"  (4.4) 

assuming that g' depends linearly on g and is independent of t, one derives 
that V ( t )  is an up-to-a-factor one-parameter semigroup and that 

N 
N-~, = I[ V ( t l  - to)gl] z (4.5) 

In fact (4.4) implies that 

~ / ( N )  V ( t  - to)g = ~o(t - to, t - t l )  ~ / ( N ' )  V ( t  - t o g '  (4.6) 

c o ( t -  to, t -  t l )  being a phase factor. Putting t = tl in (4.6) and taking 
into account that V(0) = / ,  one has 

~ / ( N )  V ( q  - to)g = og(q - to, O) v ' ( N ' ) g '  (4.7) 

Equation (4.5) follows immediately from (4.7). Substituting (4.7) into 
(4.6) one has 

V( t  - to) = w ' ( t  - t l ,  t l  - to) V ( t  - q )  V ( q  - to) (4.8) 

Summarising the results so far, we have from (3.7), (4.1) and (4.2) that the 
set of operators 

~(b, a, v, R) = V ( - b )  U(a, v, R; 0) (4.9) 

where b ~< 0 and a, v, R vary in the usual range, give a (in genera ! non- 
unitary) projective representation of the Galilei semigroup, In fact: 

~(b~, a~, v~, R~) ~(bl, al, vl, R1) 
= ~(bl ,  al, vl, R1, b2, a2, v2, R2) 

• U ( b 2 + b l ,  R 2 a ~ + v 2 b l + a 2 , R 2 v l + v 2 , R z R O  (4.10) 

where &(bl ,  a l , v l , R l , b 2 , a 2 , v 2 , R 2 )  is a suitable modulus one factor. In 
the following we shall indicate, as is usual, 

U(0, a, 0, I) = T(a), a ~ R3 
iT(O, O,v,O = G(v), v~R3 
~(0, 0, 0,R) = O ( R ) ,  R ~ SO(3) (4.11) 

5. Characterisat ion o f  a Part ic le  

An obvious unsharp property for a micro-object is its presence in a 
certain region E of space. Such a fact can be formalised, following Mackey 
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(1968), introducing a projection-valued measure P(E), defined on the Borel 
o--algebra of Ra, satisfying the following conditions: 

T(a) P(E) T(a) -~ = P(t(a) E) 
O(R) P(E) O(R) -~ = P(o(R) E) (5.1) 

where 
t(a)E-= {x: x - a ~ E }  

o(R) E -  {x: R - i x  E E} 

To characterise a particle we assume that the set of operators T(a), O(R), 
P(E) for all a, R, E is irreducible on ~ .  Therefore one has to analyse the 
problem to find a projective representation of the Galilei semigroup such 
that P(E) can be defined according to (5.1) and T(a), O(R), P(E) are an 
irreducible set of operators. As is well known such a problem has been 
solved in the case of a stable particle, in which one looks for a unitary 
projective representation of f ,  see Mackey (1968). We shall give in this 
section, in a sketchy way, the generalisation of this result to the case of an 
unstable particle. 

As for the multiplication rules of the unitary operators representing the 
elements of fro, we have 

T(a2) T(a0 = T(a2 + a~) (5.2a) 

O(R2) O(R1) = O(R 2 R1) (5.2b) 

O(R) T(a) = T(Ra) O(R) (5.2c) 

G(v2) G(v0 = G(v2 + vx) (5.2d) 

O(R) G(v) = G(Rv) O(R) (5.2e) 

r(a)  O(v) = e -'M'" a(v) r (a)  (5 .20 

where the factors are chosen according to Bargmann (1954) and the covering 
group SU(2) of SO(3) is considered; M is a real number. It is convenient 
to introduce the unitary group. 

= f e ix'd dP, fl Z(d) R3 (5.3) 
R3 

where P(E) is the projection-valued measure introduced in (5.1). One can 
call 'position operator' the generator of Z(d) times (-i). 

We have immediately, from (5.1), that 

r(a) Z(d) = e-"'aZ(d) T(a) (5.4a) 

O(R) Z(d) = Z(Rd) O(R) (5.4b) 

The problem of finding the unitary irreducible representations of the 
multiplication rules (5.2a, b, c) and (5.4a, b) has been solved by Mackey 
(1968). Any such representation is in correspondence with an irreducible 
unitary representation of SU(2) and therefore is labelled by an integer or 
half-integer index j. The Hilbert space ~4~ is the direct integral of Hilbert 
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spaces ~(p), I~ ~ R3 with the Lebesgue measure, ~(p) being the space OJ 
of the irreducible representation NJ of SU(2). Furthermore one has for 
every {f(p)} e of' 

Z(d) {f(p)} = {f(p - d)} (5.5a) 

O(R) {f(p)} = {DJ(R) f ( R  -1 p)} (5.5b) 

T(a) {f(p)} = {e-'"Pf(p)} (5.5c) 

where DJ(R) is the operator representing R in NJ. Since the multiplication 
rules between T(a), O(R), G(v) are identical to those between T(a), O(R), 
Z(Mv) one has by the irreducibility of the representation of such multi- 
plication rules that a unitary operator S on oY' exists such that 

T(a) = ST(a) S -1 (5.6a) 

O(R) = SO(R) S -~ (5.6b) 

G(v) = S Z ( M v )  S -~ (5.6c) 

By (5.5c) and (5.6a) we have 

S{f(p)} = {a(p) f(p)} (5.7) 

where a(p) is a unitary linear operator on ~J. By the irreducibility of the set 
(05.5) and by equation (4.1) one easily sees that the kernel of V(t)  contains 
only the zero vector of J f  and that the range of V(t)  is ~ ,  so that V-l(t) 
is bounded. Then, defining for t < 0 V(t)  = V - ~ ( - t )  one obtains by (4.9) 
a projective representation of the Galilei group which in general is not 
unitary. 

The factor in equation (4.2) can be eliminated; this follows by a trivial 
generalisation of a theorem of Bargmann about projective representations 
of one-parameter groups (Bargmann, 1954). We have therefore 

V(q )  V(t2) = V ( q  + t2), h,  t2 e R;  V(O) = r (5.8) 

As for the factors in the multiplication rules between V(t)  and the operators 
representing (r one has easily 

T(a) V(t)  = V( t )  T(a) 

o(R) v(t) = v(t) o(R) 

r(vt)  G(v) V(t)  = e -'l/2uv2t V(t)  G(v) 

Introducing the one-parameter group 

V'( t )  = S - I  V( t )  S, t ~ R 

one has by (5.6) and (5.9) that 
T(a) V'( t )  = V'( t )  r (a)  

o(R) v'(t) = v'(t) o(R) 

r(vt)  Z(Mv) V'( t )  = e -~x/2Mv2t V'( t)  Z (My) 

(5.9a) 
(5.9b) 
(5.9c) 

(5.10) 

(5.11a) 
(5.11b) 
(5.110 
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Taking into account equations (5.5c), (5.1 la) we have 

V'(t) {f(p)} = {t/(p, t) f(p)} (5.12) 

where t/(p,t) is a linear operator on ~J. Substituting (5.12) into (5.8), 
(5.1 lb) and (5.1 lc) we obtain respectively 

~(p, tl)t/(p, t2) = t/(p, tl + t2) (5,13a) 

t/(Rp, t) = DJ(R) ~(p, t) DJ(R -~) (5.13b) 

e -iv'pt t/(p - My, t) = e -~l/2Mv2t t/(p, t) (5.13c) 

for p ~ R3 almost everywhere. From equation (5.13c) one has that 

t/(p, t) = e -tl/(zM):' 8 (0  

where ~(t) is a linear operator on ~J; then by (5.13b), the irreducibility 
of NJ and (5.13a) one obtains 

r/(p, t ) =  e x p [ - i ( ~ p  z + 2) t ] I  ' j '  (5.14) 

where 2 is a complex number. Taking into account (5.10), (5.7), (5.12) and 
(5.14) one has 

. 1 2 

writing 2 = U -  i(7/2) one has 7 ~> 0 due to the contractive character of 
V(t) for t ~> 0; U can be interpreted as internal energy of the particle and 
y as the inverse lifetime. 

Finally let us require that the 'position' observable introduced by (5.1) 
is covariant, i.e. 

u(0, v, r; t) e ( E )  U-l(0, v, i; t) = ?(g(x, t)e) 
g(v, t) E = {x: x - vt ~ E} (5.16) 

Equation (5.16) for t = 0 gives 

G(v) ? (e )  a-l(v) = ?(E) (5.17) 

which in turn implies (5.16) by (3.8) and (5.1). 
Substituting (5.6c) into (5.17) and taking into account (5.5a) and (5.5b) 

by the irreducibility of the set of  operators Z(d), T(a), O(R), one has 

S = :  (5.18) 

so that by (5.6c) 

G(v)=Z(Mv) (5.19) 

In conclusion we have shown that an unstable Galilean particle is associated 
to an irreducible projective representation of the Galilei semigroup (unitary 
with exclusion of time translations), characterised by M, j, 2 = U_ir/2. 

24 
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The operators V(t), T(a), O(R), G(v) are given respectively by equations 
(5.15), (5.5c); (5.5b), (5.19) with (5.5a). 

Correspondingly one has the obvious generalisation of the SchrOdinger 
equation 

.0~s~(x, t)(~mA2q_U_i,/2)~lsz(x,t ) (5.20) a ~  = 

for 

where 

1 
~s,(x, t )= (2~z)3/------- ~ f dpe ip'x (usz,f~o(p, t)) 

{Lo( l ' ,  t )}  = v(t) Lo a n d  { u , , } s = _ j , _ j + i  . . . . .  +j 

is the orthonormal set of eigenstates of DJ(R), R being any rotation around 
the z-axis. 
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